word shortest - traducción al árabe
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

word shortest - traducción al árabe

Shortest common supersequence; Shortest common superstring problem; Shortest common superstring

word shortest      
الكلمة الأقصر
word oriented         
BASE MEMORY UNIT HANDLED BY A COMPUTER
Computer word; Word size; Word length; Wordlength; 10-bit; Halfword; Dword (Computer); Qword; Machine word; DWORD; DWord; Dword; Data word; Double word; Word orientation; Word-oriented; Word oriented; Word (unit); Word (data type); Word width; Memory word; Bitness; Binary word; Variable word-length computer; Variable word-length architecture; Variable word-length machine; Variable word length architecture; Variable word length computer; Variable word length machine; Variable word architecture; Variable word-length (computer hardware); Variable word length (computer hardware); 32-bit word; 32bit word; Catena (unit); Catena (computing); Catenae (unit); Catenae (computing); Storage word; 16-bit word; 16 bit word; 32 bit word; 48-bit word; 48 bit word; 51 bit word; 51-bit word; 60-bit word; 60 bit word; 64 bit word; 64-bit word; 96 bit word; 96-bit word; Word size (computing); Quarterword; Variable word length; Fullword; Kiloword
موجه نحو الكلمات
data word         
BASE MEMORY UNIT HANDLED BY A COMPUTER
Computer word; Word size; Word length; Wordlength; 10-bit; Halfword; Dword (Computer); Qword; Machine word; DWORD; DWord; Dword; Data word; Double word; Word orientation; Word-oriented; Word oriented; Word (unit); Word (data type); Word width; Memory word; Bitness; Binary word; Variable word-length computer; Variable word-length architecture; Variable word-length machine; Variable word length architecture; Variable word length computer; Variable word length machine; Variable word architecture; Variable word-length (computer hardware); Variable word length (computer hardware); 32-bit word; 32bit word; Catena (unit); Catena (computing); Catenae (unit); Catenae (computing); Storage word; 16-bit word; 16 bit word; 32 bit word; 48-bit word; 48 bit word; 51 bit word; 51-bit word; 60-bit word; 60 bit word; 64 bit word; 64-bit word; 96 bit word; 96-bit word; Word size (computing); Quarterword; Variable word length; Fullword; Kiloword
كلمة بيانات

Wikipedia

Shortest common supersequence problem

In computer science, the shortest common supersequence of two sequences X and Y is the shortest sequence which has X and Y as subsequences. This is a problem closely related to the longest common subsequence problem. Given two sequences X = < x1,...,xm > and Y = < y1,...,yn >, a sequence U = < u1,...,uk > is a common supersequence of X and Y if items can be removed from U to produce X and Y.

A shortest common supersequence (SCS) is a common supersequence of minimal length. In the shortest common supersequence problem, two sequences X and Y are given, and the task is to find a shortest possible common supersequence of these sequences. In general, an SCS is not unique.

For two input sequences, an SCS can be formed from a longest common subsequence (LCS) easily. For example, the longest common subsequence of X [ 1.. m ] = a b c b d a b {\displaystyle [1..m]=abcbdab} and Y [ 1.. n ] = b d c a b a {\displaystyle [1..n]=bdcaba} is Z [ 1.. L ] = b c b a {\displaystyle [1..L]=bcba} . By inserting the non-LCS symbols into Z while preserving their original order, we obtain a shortest common supersequence U [ 1.. S ] = a b d c a b d a b {\displaystyle [1..S]=abdcabdab} . In particular, the equation L + S = m + n {\displaystyle L+S=m+n} holds for any two input sequences.

There is no similar relationship between shortest common supersequences and longest common subsequences of three or more input sequences. (In particular, LCS and SCS are not dual problems.) However, both problems can be solved in O ( n k ) {\displaystyle O(n^{k})} time using dynamic programming, where k {\displaystyle k} is the number of sequences, and n {\displaystyle n} is their maximum length. For the general case of an arbitrary number of input sequences, the problem is NP-hard.